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On the Sparse and Symmetric Least-Change 
Secant Update* 

By Trond Steihaug** 

Abstract. To find the sparse and symmetric n by n least-change secant update we have to solve 
a consistent linear system of n equations in n unknowns, where the coefficient matrix is 
symmetric and positive semidefinite. We give bounds on the eigenvalues of the coefficient 
matrix and show that the preconditioned conjugate gradient method is a very efficient method 
for solving the linear equation. By solving the linear system only approximately, we generate a 
family of sparse and symmetric updates with a residual in the secant equation. We address the 
question of how accurate a solution is needed not to impede the convergence of quasi-Newton 
methods using the approximate least-change update. We show that the quasi-Newton methods 
are locally and superlinearly convergent after one or more preconditioned conjugate gradient 
iterations. 

1. Introduction. Quasi-Newton methods have proved themselves in dealing with 
the unconstrained minimization problem: find x* so that for some E > 0 

f(X*) < f(X), Vx: lix - X*1I < 6, 

where f: Rn -- R is a smooth function. Quasi-Newton methods approximate the 
solution x * by generating a sequence of iterates { Xk) as follows: 

Given x0, and Bo 

FOR k = 0 STEP 1 UNTIL Convergence DO 

(1.1) Solve BkSk = -Vf(xk) 

Set xk?l = Xk + Sk 

Update to obtain Bk + 1* 

The basic assumption for quasi-Newton methods is that in a neighborhood of x * 

(1.2) Bksk + vf(xk) v Vf(xk + Sk)- 

So solving the linear system (1.1) may not be justified when the approximation (1.2) 
is not accurate, which may occur when xk is far from the solution x * or when Bk is 
an approximation to the Hessian matrix of f at Xk. Instead Steihaug [12] introduces 
the inexact quasi-Newton method which only approximately solves (1.1) in some 
unspecified manner. In the inexact quasi-Newton method, we accept an approximate 
solution Sk of (1.1) if a relative residual is less than a tolerance Ok that may depend 
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on X;. The inexact quasi-Newton methods generate the sequence of iterates as 
follows: 

Given x0, and Bo 
FOR k = 0 STEP 1 UNTIL Convergence DO 

Find some sA so that for rk = BkSk +vf (xA ), then 

(1.3) llrkll a 
IIVf(Xk)ll 

Set xk+l = Xk + Sk 

Update to obtain Bk+1* 

If BA is the Hessian matrix of f at Xk, then we have an inexact Newton method [4]. 
Hessian information of f is incorporated in the approximations { Bk) by requiring 

that 

(1.4) Bk?lSk = vf(xk + Sk) Vf(xk) YA 

which forces the new approximation of the Hessian matrix to satisfy (1.2) with 
equality, i.e., Bk+lsk + Vf(xk) = Vf(xk + Sk). Updates that satisfy (1.4) are called 
secant updates and (1.4) is called the secant equation. Since Bk is an approximation 
of the symmetric Hessian matrix of f, it is natural to require that { Bk) are 
symmetric matrices. In large scale optimization the variables or groups of variables 
are only weakly connected in the sense that af/ax, depends only on a few variables, 
i.e., 

(1.5) a2f(X) =0 for allx 
axlax 

for most j. A sparsity structure K of the Hessian matrix of f is a set of indices so that 
if (i,j) e K, then (1.5) holds for all x. We note that if there exists x so that the 
Hessian matrix of f at x is positive definite, then (i,i) E K, i = 1,2,..., n. We 
assume in the following that (i,i) E K, i = 1,2,..., n. Further, we assume that K 
preserves the symmetry, i.e., if (i,j) E K, then (j,i) E K. By requiring that Bk+1 

should preserve the symmetric and sparse structure, we hope to reduce the number 
of arithmetic operations to find Sk so that (1.3) holds, get a better approximation of 
the Hessian matrix and reduce the computer storage required to store the approxi- 
mation. 

Marwil [9] and Toint [15] derived a sparse and symmetric update of the form 

(1.6) (B+) =JB1j + u,s + s,u, (i,j) 
c K, lj 

O, otherwise, 

that satisfies (1.4) for some u E R'. We have eliminated the subscript k referring to 
the iteration number, and we let B+ denote the new update. However, to find the 
update B+ we have to solve a consistent linear system of equations 

(1.7) Gu = b, 

where G is an n by n symmetric and positive semidefinite matrix with the same 
sparsity structure as the update. In this paper, we address the question of how 
accurate a solution of (1.7) is needed in order not to impede the convergence. By 



SPARSE AND SYMMETRIC LEAST-CHAN(GE SECANT UPDATE 523 

solving (1.7) only approximately and using an update of the form (1.6), we generate 
the family of updates 

(1.8) B(U)IJ= /BIJ + 
us,S 

+ s1uJ (i,j) E K, 
O, otherwise, 

where u is the approximate solution of (1.7). 
In conjunction with the sparsity structure K we also define an operator 

Z: RJxJ --l RJIXJx so that 

(1.9) Z(M)/lj MJ when (i,j) E K, 
O, otherwise. 

For a given vector s E Rn and a sparse symmetric matrix B E R', the updates in the 
family (1.8) are given by 

(1.10) B(u) B + Z(US + SUT), 

where we assume that Z(B) = B. 
In Section 2, we discuss some basic properties of the updates. We show that the 

preconditioned conjugate gradient method is an efficient method for finding an 
approximate solution of (1.7). 

In Section 3, we discuss local and superlinear convergence results of the inexact 
quasi-Newton using updates in the family. In the last section we briefly discuss 
global convergence. 

2. Basic Properties of the Updates. If we require that B(u) in (1.10) satisfies the 
secant equation 

(2.1) B(u)s =Y, 

where s and y are given vectors, then u has to satisfy 

0 = y - Bs - Z(UST)S - Z(SUT)S = y - Bs - Du - Z(SST)U, 

where D is a diagonal matrix with elements 

(2.2) D,, 
2 

s, i = 1,..., n. 
j: 0ij) &- K 

Put 

(2.3) b=y-Bs, and G-D+Z(ssT), 

and we have that u has to satisfy the equation (1.7) where b and G are given in (2.3). 
If DI, = 0, then the ith component of B(u)s is zero and b, = y, so if y, 0 0, we see 

that no update in the family will satisfy the secant equation (2.1). However, if f is 
twice continuously differentiable, let M R nX be given by 

(2.4) M = ~~1 a2f(X~ + TS)12 (2.4) M,,=| ax-ax dT, i,j = 1,2,..., n. 

Let y be chosen as 

(2.5) y vf(x + s) - vf(x). 

Then we have from Ortega and Rheinboldt [10, 3.2.6] that y = Ms and y, = 0 
whenever Di, = 0, so the system (1.7) is consistent for this choice of y. 
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For the given sparsity structure K of the Hessian matrix of f and vector s in RI, let 
y be as in (2.5), and define the affine space 

(2.6) V { B E Rnxn: Bs = Y, BT = B, and B,J =O V(i,j) 4 K) . 

From the above discussion, we note that if f is twice continuously differentiable in 
R", then the set V is nonempty. In the following we assume that V is nonempty. 

Define the quadratic function 

(2.7) q(u) = uTGu - b Tu, 

where b and G are given in (2.3). 

LEMMA 2.1. If M e V, then for all u E R't 

(2.8) IIB(u) - M112 = JlB - M12 + 4q(u). 

Proof. Let u E R'I. Then 

(2.9) IIZ(usT + suT)II2 = E (s1u + u1s1)2 
(i ,j) E K 

= 2uTDu + 2 E s,u1uls, = 2uTGu. 
(ij) E K 

Let M E V. Hence Ms = y and 

IB(u) - MII = IB - M112 + IIZ(usT + sUT)II2 + 4 E (B -M) 
(i,j) e-K 

= IB - MII2 + 2uTGu - 4UT(y - Bs) 

using (2.9) and (2.3). The desired equality (2.8) follows from the defintion of q in 
(2.7). Q.E.D. 

It follows directly from (2.9) that uTGu is bounded below, hence G is positive 
semidefinite, and from (2.8) it follows that q(u) is bounded below, so b is in the 
range space of G. We can thus minimize q(u) to find a B(u) close to the affine space 
V. 

COROLLARY 2.2. Let u be a minimizer of q(u). Then B = B(U) is the least change 
update 

(2.10) IHB-BIIF = min(llB - BIIF: B E V}. 

Proof. If u is a minimizer of q(u), then u is a solution of Gu = b and B(U) E V. 
By choosing M = B(iU), we have from (2.8) that JIB(iU) - Bl 2 = -4q(iu). Hence for 
all M E V we have, using (2.8), 

IIB(ii) - BI12 = JIB - M112 - jIB(ii) - M112 < IIB - -Mj1. 

Since B(U) E V, we have B(U) is a least-change update. The Frobenius norm is 
strictly convex, so B(U) is the unique solution of (2.10). Q.E.D. 

The update B(U) was shown by Toint [15] to be the least-change update, and it 
follows from the general theory in Dennis and Schnabel [7] that the update is of the 
form (1.6). 

We want to solve the linear system (1.7) with an iterative method. At each 
iteration we want to make q(a) as small as possible since this will make the update 
B( uk?l) close to V. An appealing iterative method for minimizing q(u) is a 
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preconditioned conjugate gradient method (see for example Axelsson [1]) since these 
are optimal over a large class of iterative methods. 

Let (, -) be the standard innerproduct on RW, i.e., for d,p E RW. Then 
(d,p) = dTp. A preconditioned conjugate gradient method induced by the diagonal 
matrix (2.2) is 

The PCG method: 

Letu? = 0, ro = y - Bs, and do = D+ro 
FOR k = 0 STEP 1 UNTIL Convergence DO 

k+ 1=uk + ak dk (rk D+r k) u u + akd ak (d k,Gd k) 

rk+1 = rk + akGd, 

dk+l = D+rk+l + kd 3 k - (rk D+r+k) 

where D + is the pseudoinverse of D 

I 
whenDi, > 0, 

t 0, otherwise. 

From Bjork and Elfving [2] we know that when we apply the conjugate gradient 
(CG) method to 

D + 1/2GD +1/2 U= 
where i = D1/2u and b = D+ 1/2b with starting point io = 0, the iterates converge to 
the least-norm solution 

a= [D+-12GD+112]+b 

Since v is in the range space of D if and only if v is in the range space of D+, we can 
go back to the untransformed variables in the CG method, and the resulting 
algorithm is the PCG method [1]. 

The efficiency of the method depends on the ratio of the largest and smallest 
positive eigenvalue of D+ G [1], and it follows from the next theorem that this ratio is 
bounded by the maximum number of nonzero elements in any row of B (or G) and 
is thus independent of B, s, and y. The maximum eigenvalue of D+ G is the 
maximum of (d, Gd)/(d,Dd). From the theorem we have (d,Dd) = 0 if and only if 
(d, Gd) = 0, so the minimum positive eigenvalue of D + G is the minimum of 
(d,Gd)/(d,Dd) for d so that (d,Dd) # 0. 

THEOREM 2.3. Let the number of nonzero elements in each row be < m. Then for all 
d E- Rn 

(2.11) 2-(d,Dd) < (d,Gd) < 2(d,Dd). m 

Proof. We first show the upper bound (d, Gd) < 2(d,Dd). Let e' be the ith unit 
vector. Consider 

D - Z(ssT) = 2 (e'sj - es,)(e s, - es,) . 
(i,j) E K 
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Since each term in the sum is a symmetric positive semidefinite rank one matrix, we 
have 

(d, [D - Z(SST)] d) > O, 

and 

(d, Gd) = (d,Dd) + (d,Z(ssT)d) < 2(d,Dd), 

which gives the upper bound in (2.11). If A is a diagonal matrix in R Xn with 
diagonal elements a,a2,. . ., a, then we write 

A = diag(a,). 

Consider 

(2.12) G = D + Z(SST) = 2diag(s7) 

+ E~ ~ (esj + eJsi)(esj+ eJs)T 
(i,j)eK 

I#I 

and 

(2.13) Z(SST) = diag((2 _ 
M- S 1) 

+ ( E) (e's + e's1)(e's +eJs) 
T 

where mi, i =1,2,..., n, is the number of nonzero elements in row i (including the 
diagonal element), i.e., 

m,= E 1. 
j:((Ij) E K 

Let m be the maximum number nonzero elements in any row, 

m = max( m,: i = 1 ,..., n), 

and assume that m > 2. We show that the matrix mG - 2D is positive semidefinite. 
From (2.12) and (2.13) we have 

mG - 2D = (m - 2)G + 2Z(ssT) = 2diag((m_ - m,)s2) 

+ 2 x, (eK s + eJs,)(e' s + eJs,) 
(ijv) ) K 

+ E (e s, + eJs,) (e's, + eJs T 
i *j 

Since each term in the two sums is a symmetric positive semidefinite rank one 
matrix, we have 

(d,(G - d - I 2 _ > 0 
m m 1~~=1 

since m > m, for all i. The case m = 1 follows immediately. Q.E.D. 
If the matrix is full, i.e., K = {( i,j): 1 < i, j < n), then the lower bound in (2.11) 

is (2/n)(d, Dd). However, it is easily seen that (d, Dd) < (d, Gd). We now consider 
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the case when the minimum number of nonzero elements in each row is larger than 
(n/2) + 1. In this case we can improve the lower bound. Consider 

(2.14) Z(ssT) - SST = 
I 

E (e's, - ejsj)(e's, - eIsi)T 
2 
(ij) e K 

- diag((n - m, )S72). 

Let 

= max{ n - mi + 2: i = 1,2, ... , n). 

We now show that mG - 2(D + ssT) is positive semidefinite. From (2.12) and (2.14) 
we have 

-G 2(D + ssT) = (m -2)G + 2(Z(ssT) - ssT) 

= 2(mi - 2)diag(s72) - 2diag((n - mj)s2) 

+ im-2 + E (e's + e'sj)(e's + e's1)T 
(ij) 

) 
K 

l*1 

+ E (e's, - eJs1)(e's, - e Sj )T. 
(ij) e K 

Since the terms in the sums are symmetric and positive semidefinite matrices, we 
have 

(d (G - 4D)d) = (d (G - (D+ ss))d) + l(d ) 

2 n 
- m (r - 2 - n + mi)s2d2 ) 0, 

and we have the lower bound 
2 

(2.15) (d,Gd) >-=(d,Dd). 

We note that if the matrix is full, then mi = 2 and (2.15) is sharp. We now show 
that the upper bound in (2.11) is sharp. From (2.3) Gs = 2Ds, so the upper bound is 
achieved for d = s. We now give an example of a sparsity structure and vector s so 
that the lower bound is achieved. Consider a tridiagonal matrix with one element in 
each corner. Then the sparsity structure K is given by 

K ={(1, 1), (1, 2), (1, n),n, 1), ( n, n - 1), (n, n) 

(i,i - 1), (i,i), (i,i + 1):1 I i -< n} 

for even n > 4 and ST = (1. 1). Then Di, = 3 for i = 1,2,. .., n. The eigenvalues 
of G are 

Xk=4+2cos( 2kT) fork= 2,...n 

with eigenvector vk, where thejth component,j = I,., n, is v1 = sin(2jk7r/n) for 
k = 1,..., n - 1 and vjn = 1. We now have the lower bound 

(d,Gd) > min Xk(d,d) = 2(d,d) = 3 2(d,d). 
I1<k <n m 
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Marwil [9] and Toint [15] have shown that G is positive definite when all null rows 
and columns are eliminated. Dennis and Schnabel [7] give the bound 

2 min s2(d,d) < (d,Gd) < 2(s,s)(d,d) 
1 I 1 

if no s, are zero. 
We can conclude from Theorem 2.3 that when we use the preconditioned 

conjugate gradient method then [1] 

Uk)~~~~~~~~~ JIB(uk -B(U-)IIF < 2 ? 1) IIB - B(")IIF. 

In the next section, we discuss how accurate a solution is needed to achieve local and 
superlinear convergence. 

3. Local Convergence Results. In this section, we discuss local convergence results 
for inexact quasi-Newton methods where the new update Bk+l is found using 
updates from Section 2. We first discuss convergence based on the bounded 
deterioration condition [3]. Let H denote the Hessian matrix of f. 

LEMMA 3.1. Let f be twice continuously differentiable in an open neighborhood S2 of a 
pointx, and letL > 0,0 < p < 1,be such that for allx E 02 

(3.1) IIH(x) - H(x*)IIF < Llx - x*IIP, 

where 11 11 is a vectornorm. Let x, x + s E 2, andy given in (2.5). If q(u) < 0, then 

(3.2) IIB(u) - H(x*)IIF < IB - H(x*)IIF + 2La(x,x + s)p, 

where 

(3.3) a(x,z) = max{lIx - x*II, liz - x*II) . 

Proof. From (2.9) we have that if q(u) < 0, then 

(3.4) IIB(u) -MIIF < IB - MIIF. 

Let 

(3.5) M = f1H(x + Ts)d'd. 

Then from Ortega and Rheinboldt [10, 3.2.6] we have, using (2.6), that M E V. 
From (3.1) we have 

(3.6) IIM - II(X*)IIF < f IIH(x + TS) - H(X*)IIFdT 

< sup iiH(x + Ts) - H(x*)IIF 

< L sup IIX + TS - X*IIP < La(x,x + s)P 

using Ortega and Rheinboldt [10, 3.2.11] and the definition of a in (3.3). Consider 

iiB(u) - H(x*)IIF < iiB(u) - MIIF + IIM - H(x*)IIF 

< IB - MIIF + Lac(x,x + s)P 

< IB - H(X*)IIF + 2Lu(x,x + s)P 

using the triangle inequality, (3.4), and (3.6) twice. Q.E.D. 
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LEMMA 3.2. Suppose that the hypotheses of Lemma 3.1 hold, and let the sequence 

(Xk) be in 2 and satisfy 
00 

(3.7) E O(Xk,Xk+l)p "< ?? 
k =O 

Let Bk+l = Bk(uk) using Sk = Xk+1 - Xk and Yk in (1.4), and let bk be defined as in 

(2.3). If/3> 0 and 

(3 .8) qk (Uk ) 1< -f (bkb) 
(Sk,Sk) 

then 

(3.9) lim 
l bkll 

=. 

Proof. The proof follows the technique of Broyden, Dennis and More [3] and 
Dennis and More [6]. Let Mk be given by (3.5), and let 

p2 = 4: (bk, bk ) 
k 

(sk,Sk) 

Consider 

IBkl - MkII = IIBk - MkII2 + 4qk(Uk) - -IBk -MkII2 - 

< (IIBk - Mk-lIIF + IIMk Mk-lIIF) 1k 

using (3.8) and the triangle inequality. From (3.6) we have 

IIMk - Mk-lIIF < IIMk - H(x*)IIF + IIH(x*) - Mk-111F 

< L(Of(Xk+I,Xk)p + O(Xk,Xk-l) )' 

Put pl = JIB, - M,_111F. Then 

P2k? < [Pk + L('U(Xk+l,Xk)p + (Xk,Xk_1)p)]2 _- 

In view of the inequality 

(a2 -b2)1/2 < a -b for0 < b < a, 2a 

we have 

(3.10) Pk+1 < Pk + L(af(Xk+l,Xk)p + u(Xk,Xk-1)P) 

_ A~~~~~~k 

2[Pk + L(uF(Xk+l,Xk)p + u(Xk,Xk-1) )] 

From (3.2) 

k-1 

IlBk - H(x*)IIF < IIBO - H(x*)IIF + 2L E a(x1+j,xj)P, 
, =o 

and from (3.7) we have that {(I Bk II) is bounded, hence Pk is bounded and we have 

(3.11) L(CJ(Xk+l,Xk)p + U(Xk,Xk-1) ) + Pk < P < (0. 
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Rearranging (3.10) and using (3.11), we have 

2 < Pk Pk+l + L(uF(Xk+l,Xk)' + (Xk,Xk-l)p) 

and 

2 E /k p Po + 2L E (Xk+l?,Xk)p < 00, 
k>O k>O 

and we have the desired result Pk -' 0 as k -> om. Q.E.D. 
We now show that the PCG iterates satisfy (3.8). Eliminate the outer subscript k 

and consider 

q(u') < q(ul) = q(a0D b) I- (b,D+b)2 
2 (b,D+GD+b)' >1 

But from Theorem 2.3 we have 

(D+b,GD+b) < 2(D+b,DD+b) = 2(b,D+b). 

From the choice of y, if D,, =0, then b, = 0. 

b2 (b, b) 
(b,D+b) = D, (s b ) 

D,, 0 

using that from (2.2) we have Di, < (s, s). Hence we have 

q(u') < - (b,D+b) < - (b) ib b1. 4 ' ~ 4 (s,s)' 

The next theorem will show that one or more PCG iterations are sufficient to 
guarantee local and superlinear convergence for the inexact quasi-Newton method 
when 1 > -k 0 as k -- oo. 

THEOREM 3.3. Let f be twice continuously differentiable in an open neighborhood Q of 
a point x * for which Vf(x*) = 0, H(x *) is nonsingular, and let L > 0, 0 < p < 1, be 
such that for all x E 0, 

IIH(x) - H(x*)IIF < Lllx - x*IIP. 

Let the relative residual (1.3) satisfy 1 > 0 > Ok' and let qk(uk) < 0. For any r which 
satisfies 0 < r < 1 there exist positive constants e and a, so that if 

lixo - x*II* < , IBo - H(x*)IIF < a, 

where IIYII* = IIH(x*)yII, then for any inexact quasi-Newton method Xk - x* as 
k -x o, and 

(3.12) IIxk+l - x*II* < rllXk - X*II*, k > 0. 

Moreover, if uk satisfies (3.8) and Ok -? 0 as k -x o, then 

lim Ix?-xII= 0. 
k -oc lXk - x*II 

Proof. Condition qk(Uk) < 0 and (3.2) imply that the sequence of approximations 
(Bk) of the Hessian matrix H(x*) of f is of bounded deterioration. If 0k = 0, the 
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local convergence follows from Broyden, Dennis and More [3]. The general case 
1 > 6 >' k follows from Steihaug [12] and Eisenstat and Steihaug [8]. 

From (3.12) we have (3.7), so if /3 > 0 and 

qk (Uk) < -A (bk,bk) 

where bk = Yk - BkSk + Vf(xk+1) - vf(xk) - BkSk, then from Lemma 3.2 we 
have 

(3.13) |vf(Xk+l) vf(Xk) -BkskIl -*0 as k *oo. 

If 6k = 0, then the superlinear rate of convergence follows from Dennis and More 
[5]. From Steihaug [12] we have that the sequence { xk) is converging superlinearly if 
and only if 

(3.14) lim II ) 
k-oxc IIVf(Xk)II- 

provided (3.13) holds. But (3.14) holds if Ok -> 0 as k -- cc. Q.E.D. 

4. Global Convergence Results. A major problem in globalizing the quasi-Newton 
methods using the sparse update from Section 2 is that the matrix Bk can be 
singular. An appealing approach is to replace (1.1) by finding the solution Sk of the 
trustregion problem 

(4.1) min{ vf (Xk)S + 2STBkS; IIS112 < 'AJ 

for a suitable choice of Ak and to replace (1.3) by finding an approximate solution of 
(4.1). Global algorithms based on trust regions [11], [16], a combination of conjugate 
gradient methods and trust regions [13], or a backtracking strategy [14] can be shown 
to be convergent in the sense that 

liminf llVf(xk)ll = 0 
k -x 

for any given xo and Bo under the assumptions that there exist a1 and a2 that only 
depend on xo and Bo so that 

k-I 

(4.2) IlBkll < a1 + a2 E 11X,+1 - Xill, 
i=O 

f is bounded below, f is twice continuously differentiable in R' and there exists 
L > 0 so that for all x and z in R' 

(4.3) IIH(x) - H(Z)IIF < Lllx - zll. 
So to establish global convergence results, we have to show that the approximations 
Bk are not growing too fast. 

LEMMA 4.1. Let f be twice continuously differentiable in RW, and assume that (4.3) 
holds. Let xO,X1,..., Xk be points in RW, and let B,+1 = B,(u,) be updated using 

si = x,+ 1 - x, and y, in (1.4). If q,(u,) < 0, i = 0,1, . . ., k - 1, then there exist a1 and 
a2 that only depend on xo and Bo, so that (4.2) holds. 
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Proof. Let Mi be defined as in (3.5) using s, and yi. Then 

(4.4) IIMl - H(xJ )IF L 2 IIxI+1 - xill, j = i,i + 1. 

Consider 

(4.5) 11B,1? - H(xi+l)IIF J IB,+1 - MIIF + IM1 - H(x,+l)IIF 

< lIB, -MIIF + 2 IIXI+1 - Xill 

< IB - H(x,)IIF + Lllxi+l - xill 

using the triangle inequality, (3.4), (4.3), and (4.4). Hence 
k-I 

(4.6) IIBk - H(Xk)IIF < IBO - H(xO)IIF + L E IIXi+1 - XkII. 
l=O 

But 
k-I 

IIH(xk) - H(xO)IIF < L ? IIx,+?-xjjj, 
,=o 

using the triangle inequality and (4.3), and we have 

IIBkIIF < IIBk - H(Xk)IIF + IIH(Xk)- H(xo)IIF + IIH(xo)IIF 
k-I 

< IIH(xo)IKF + IBo - H(xo)IIF + 2L E - x,+ xI-IxI, 
,=O 

using the triangle inequality, (4.5), and (4.6). Q.E.D. 
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